¼¼°èÀÇ CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀå
CO2 based Plastics
»óǰÄÚµå : 1752919
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 391 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,496,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 47¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 7.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 47¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®Ä«º¸³×ÀÌÆ® À¯ÇüÀº CAGR 6.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 12¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Æú¸®¿ì·¹Åº À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 9.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 1,660¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR12.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2024³â¿¡ 8¾ï 1,660¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 12.0%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â¿¡´Â ¿¹Ãø ½ÃÀå ±Ô¸ð 9¾ï 9,520¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 4.2%¿Í 7.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.2%·Î ÃßÁ¤µË´Ï´Ù.

¼¼°èÀÇ CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ÀÌ ±âÁ¸ Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¼¼°è CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀåÀº »ê¾÷°è°¡ ¼®À¯ ±â¹Ý Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Àúź¼Ò, ȯ°æ ģȭÀûÀÎ ´ë¾ÈÀ» ãÀ¸¸é¼­ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀûÀÎ ¼ÒÀç´Â Á¾Á¾ »ê¾÷ ¹èÃâ¹°¿¡¼­ ȸ¼öÇÑ ÀÌ»êȭź¼Ò¸¦ Æú¸®Ä«º¸³×ÀÌÆ®, Æú¸®¿Ã ¹× ±âŸ Æú¸®¸Ó Àü±¸Ã¼·Î È­ÇÐÀûÀ¸·Î ÀüȯÇÏ¿© ÇÕ¼ºµÇ¸ç, CO2 ±â¹Ý ÇÃ¶ó½ºÆ½Àº Æó±â¹°ÀÎ ÀÌ»êȭź¼Ò¸¦ ¿ø·á·Î »ç¿ëÇÏ¿© ÇÃ¶ó½ºÆ½ »ý»ê ½Ã ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¹èÃâ °¨¼Ò¿Í ÀÚ¿ø ¼øÈ¯À̶ó´Â µÎ °¡Áö ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ±âÈÄ º¯È­¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö°í ÇÃ¶ó½ºÆ½ Æó±â¹° ¹× ¹èÃâ¿¡ ´ëÇÑ Á¤Ã¥Àû ÇÁ·¹ÀÓ¿öÅ©°¡ °­È­µÇ´Â °¡¿îµ¥, CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ °³¹ß°ú »ó¿ëÈ­´Â Áö¼Ó °¡´ÉÇÑ ¼ÒÀç Çõ½ÅÀ» À§ÇÑ À¯¸ÁÇÑ ±æÀ» Á¦½ÃÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ÇÃ¶ó½ºÆ½ÀÇ Áß¿äÇÑ ÀåÁ¡ Áß Çϳª´Â Àç·áÀÇ Æ¯¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í È­¼® ¿¬·á¿¡¼­ ÃßÃâÇÑ ¼ººÐÀÇ ÀϺθ¦ ´ëüÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÇÃ¶ó½ºÆ½ÀÇ ¿ëµµ´Â À¯¿¬ÇÑ ¹ßÆ÷ü ¹× ÄÚÆÃºÎÅÍ °æÁú ¿ë±â ¹× ÀÚµ¿Â÷ ºÎǰ¿¡ À̸£±â±îÁö ´Ù¾çÇϸç, CO2¸¦ Æú¸®¸Ó °ñ°Ý¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ÇÃ¶ó½ºÆ½ »ý»ê·® 1Åæ´ç ¿Â½Ç °¡½º ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖ¾î Áö¼Ó°¡´É¼º Ãø¸é¿¡¼­»Ó¸¸ ¾Æ´Ï¶ó º¯µ¿ÇÏ´Â ¼®À¯ °¡°Ý¿¡ ´ëÇÑ ÇìÁö ¼ö´ÜÀ¸·Îµµ ¸Å·ÂÀûÀÔ´Ï´Ù. ESG ¸ñÇ¥¿Í ¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ ºÎÇÕÇÏ´Â °Ç¼³, Æ÷Àå, ÀüÀÚÁ¦Ç°, ¼¶À¯ »ê¾÷ µîÀÇ ±â¾÷µéÀÌ ESG ¸ñÇ¥¿Í ¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ ´ëÇÑ Á¤ÇÕ¼ºÀ» ³ôÀ̰í ÀÖÀ¸¸ç, Á¶±â äÅà ±â¾÷À¸·Î À̸§À» ¿Ã¸®°í ÀÖ½À´Ï´Ù.

CO2 À¯·¡ ÇÃ¶ó½ºÆ½ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼ú Çõ½ÅÀº ¹«¾ùÀΰ¡?

Ã˸Šº¯È¯ ±â¼úÀÇ ¹ßÀüÀº CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ »ý»êÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ÁÖ¿ä µ¹ÆÄ±¸¿¡´Â ¾Æ¿¬, ÄÚ¹ßÆ®, ÈñÅä·ù ¿ø¼Ò¿Í °°Àº ±Ý¼Ó ±â¹Ý Ã˸Ű¡ Æ÷ÇԵǸç, Àû´çÇÑ ¿Âµµ¿Í ¾Ð·Â ÇÏ¿¡¼­ CO2¿Í ¿¡Æø½Ãµå ¹× ±âŸ ´Ü·®Ã¼¿ÍÀÇ ¹ÝÀÀÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã˸аøÁ¤Àº Æú¸®Ä«º¸³×ÀÌÆ® Æú¸®¿ÃÀ» »ý»êÇϱâ À§ÇØ °³¼±µÇ¾î Æú¸®¿ì·¹Åº ¹× ±âŸ ±â´É¼º Æú¸®¸Ó »ý»ê¿¡ »ç¿ëµË´Ï´Ù. ÀÌ¿Í ÇÔ²², CO2ÀÇ Àü±Ø Ã˸Š¹× ±¤È­ÇÐ º¯È¯¿¡ ´ëÇÑ »õ·Î¿î ¿¬±¸´Â Àç»ý °¡´ÉÇÑ Àü·Â ¹× ž翡³ÊÁö¸¦ Ȱ¿ëÇÏ¿© ¸ÂÃãÇü Æú¸®¸Ó Àü±¸Ã¼¸¦ »ý»êÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

Àüȯ È­ÇлӸ¸ ¾Æ´Ï¶ó ¹ÝÀÀ ¾ÐÃâ ¹× Ã·´Ü ÄÄÆÄ¿îµå¿Í °°Àº °íºÐÀÚ °¡°ø ±â¼úÀÇ ¹ßÀüÀ¸·Î CO2 ±â¹Ý Æú¸®¿ÃÀ» ±âÁ¸ ¼öÁö¿Í È¥ÇÕÇÏ¿© ȯ°æÀû ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇÏ´Â ÇÏÀ̺긮µå ÇÃ¶ó½ºÆ½À» Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Àç·á °úÇÐÀÚµéÀº ´Ù¾çÇÑ ¿ëµµ¿¡ ¸Â°Ô °æµµ, À¯¿¬¼º, ¿­ ¾ÈÁ¤¼ºÀ» º¯È­½Ãų ¼ö ÀÖ´Â CO2 ±â¹Ý Æú¸®¸Ó¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ź¼Ò Æ÷Áý ¹× ÀÌ¿ë(CCU) ÀÎÇÁ¶óÀÇ Çõ½ÅÀº ÁßÇÕ °øÁ¤¿¡ Á¤Á¦µÈ CO2ÀÇ ¾ÈÁ¤ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ °ø±ÞÀ» º¸ÀåÇÏ¿© ´ë±Ô¸ð µµÀÔÀÇ ½ÇÇö °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½´Þ·¯, Áß±¹Àº CAGR ¼ö¿ä¸¦ ÁÖµµÇÏ´Â ÃÖÁ¾ »ç¿ë »ê¾÷Àº ¹«¾ùÀΰ¡?

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½Àº ¼º´É ÀúÇÏ ¾øÀÌ Áö¼Ó°¡´É¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Æ÷Àå »ê¾÷Àº ÁÖ¿ä äÅà ±â¾÷À̸ç, ÀÌµé ¼ÒÀ縦 »ç¿ëÇÏ¿© ȯ°æ ºÎÇϰ¡ ÀûÀº Ç÷º¼­ºí Çʸ§, °æÁú ¿ë±â, ¹ßÆ÷ ¿ÏÃæÀ縦 Á¦Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¹× ¸ðºô¸®Æ¼ »ê¾÷¿¡¼­´Â °æ·®, Àú VOCÀÇ Æ¯¼ºÀ¸·Î ÀÎÇØ CO2 À¯·¡ Æú¸®¿ì·¹ÅºÀÌ ½ÃÆ®, ´ë½Ãº¸µå, ´Ü¿­ ºÎǰ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â º¸´Ù °¡º±°í ģȯ°æÀûÀ̸ç ÀçȰ¿ëÀÌ °¡´ÉÇÑ ¼ÒÀ縦 ã´Â ÀÚµ¿Â÷ »ê¾÷ÀÇ º¯È­¿¡ µû¸¥ °ÍÀÔ´Ï´Ù.

°ÇÃà ¹× ´Ü¿­ ºÐ¾ß¿¡¼­´Â CO2 ±â¹Ý ¹ßÆ÷ü°¡ ´Ü¿­ ÆÐ³Î, ½Ç¸µÀç, Á¢ÂøÁ¦¿¡ »ç¿ëµÇ¾î ³»±¸¼º°ú ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò°¡ Áß¿äÇÏ°Ô ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ¼¶À¯ »ê¾÷¿¡¼­´Â Á÷¹°ÀÇ ±â´É¼ºÀ» À¯ÁöÇϸ鼭 ȯ°æ ÇÁ·ÎÆÄÀÏÀ» °³¼±ÇÏ´Â ÄÚÆÃÁ¦ ¹× ¸¶°¨Á¦·Î¼­ CO2 À¯·¡ Æú¸®¸Ó¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÀÚÁ¦Ç° ¹× ¼ÒºñÀç Á¦Á¶¾÷üµéÀº Áö¼Ó°¡´É¼ºÀ» À§ÇÑ ³ë·ÂÀÇ ÀÏȯÀ¸·Î ÀÌ·¯ÇÑ ¼ÒÀ縦 ÄÉÀ̽º, ¾×¼¼¼­¸® ¹× Áö¼Ó °¡´ÉÇÑ ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ÅëÇÕÇϰíÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á ºÐ¾ß¿¡¼­´Â »ýü ÀûÇÕ¼º°ú ¸ÂÃãÈ­°¡ ÇÙ½ÉÀÎ Àΰø°üÀý, º¸Á¶±â ºÎǰ, ºñÁß¿ä Àåºñ ÇÏ¿ì¡ µîÀÇ ¿ëµµ·Î CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ÀÌ Æò°¡µÇ°í ÀÖ½À´Ï´Ù.

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦, ±â¼ú Çõ½Å, Áö¼Ó°¡´É¼º Àǹ« µî ¿©·¯ °¡Áö µ¿·ÂÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·ÂÀº ÇÃ¶ó½ºÆ½ Æó±â¹° °¨¼Ò, »ê¾÷ °øÁ¤ÀÇ Å»Åº¼ÒÈ­, °í¹èÃâ ¹°ÁúÀÇ ´Ü°èÀû ÅðÃâ¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÀÇ Á¤Ã¥ ÀÔ¾ÈÀÚµéÀº º¸Á¶±Ý, ³ì»ö Á¶´Þ ±âÁØ, ź¼Ò °¡°Ý ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ CCU ±â¹Ý Àç·á¸¦ Æ÷ÇÔÇÑ Àúź¼Ò Çõ½Å¿¡ Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ »ó¾÷Àû Ȱ¿ëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

±â¾÷ÀÇ Áö¼Ó°¡´É¼º Àü·«°ú ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸´Â Á¦Á¶¾÷üµéÀÌ Ä£È¯°æ ´ëüǰ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ź¼Ò Ȱ¿ëÀÇ ¹ßÀü°ú ¸ðµâ½Ä CO2 º¯È¯ ÀåÄ¡ÀÇ ´ë±Ô¸ðÈ­·Î »ý»ê ºñ¿ëÀÌ Àý°¨µÇ°í °ø±Þ¸ÁÀÇ À¯¿¬¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¼ø Á¦·Î ¸ñÇ¥°¡ ºñÁî´Ï½ºÀÇ ÇÙ½É ¿ì¼±¼øÀ§°¡ µÇ°í ÀÖ´Â °¡¿îµ¥, CO2 ±â¹Ý ÇÃ¶ó½ºÆ½Àº ±â¾÷ÀÌ Àç·áÀÇ ¼º´ÉÀ» ¹ßÈÖÇϸ鼭 Scope 3 ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖ´Â ±¸Ã¼ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. È­ÇÐ Çõ½Å°¡, ÇÃ¶ó½ºÆ½ Á¦Á¶¾÷ü, ź¼Ò Æ÷Áý ±â¼ú ±â¾÷ °£ÀÇ Çù·ÂÀÌ °­È­µÊ¿¡ µû¶ó CO2 ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀåÀº ÇâÈÄ 10³â°£ ±â¼ú Çõ½Å ÁÖµµÀÇ °­·ÂÇÑ ¼ºÀåÀ» ÀÌ·ê Áغñ°¡ µÇ¾îÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(Æú¸®Ä«º¸³×ÀÌÆ® À¯Çü, Æú¸®¿ì·¹Åº À¯Çü, Æú¸®ÇÁ·ÎÇÊ·» Ä«º¸³×ÀÌÆ® À¯Çü, Æú¸®¿¡Æ¿·» Ä«º¸³×ÀÌÆ® À¯Çü, Æú¸® ÇÏÀ̵å·Ï½Ã ¾ËÄ«³ë¿¡ÀÌÆ® À¯Çü, ±âŸ À¯Çü), »ý»ê °øÁ¤(Àü±âÈ­ÇÐ »ý»ê °øÁ¤, ¹Ì»ý¹° ÇÕ¼º »ý»ê °øÁ¤, ¿­Ã˸Š»ý»ê °øÁ¤), ¿ëµµ(Æ÷Àå ¿ëµµ, ÀÚµ¿Â÷ ºÎǰ ¿ëµµ, °ÇÃàÀÚÀç ¿ëµµ, ÀüÀÚºÎǰ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 43°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global CO2 based Plastics Market to Reach US$4.7 Billion by 2030

The global market for CO2 based Plastics estimated at US$3.0 Billion in the year 2024, is expected to reach US$4.7 Billion by 2030, growing at a CAGR of 7.9% over the analysis period 2024-2030. Polycarbonate Type, one of the segments analyzed in the report, is expected to record a 6.1% CAGR and reach US$1.2 Billion by the end of the analysis period. Growth in the Polyurethane Type segment is estimated at 9.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$816.6 Million While China is Forecast to Grow at 12.0% CAGR

The CO2 based Plastics market in the U.S. is estimated at US$816.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$995.2 Million by the year 2030 trailing a CAGR of 12.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.2% and 7.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.2% CAGR.

Global CO2-Based Plastics Market - Key Trends & Drivers Summarized

Why Are CO2-Based Plastics Emerging as a Sustainable Alternative to Conventional Polymers?

The global CO2-based plastics market is gaining traction as industries seek low-carbon, environmentally responsible alternatives to petroleum-derived polymers. These innovative materials are synthesized by chemically converting captured carbon dioxide-often from industrial emissions-into polycarbonates, polyols, or other polymer precursors. CO2-based plastics reduce the overall carbon footprint of plastic production by utilizing waste CO2 as a raw material, offering a dual advantage of emission mitigation and resource circularity. As climate concerns grow and policy frameworks tighten around plastic waste and emissions, the development and commercialization of CO2-based plastics represent a promising pathway toward sustainable material innovation.

One of the critical advantages of these plastics lies in their ability to displace a portion of fossil fuel-derived content without compromising material properties. Applications range from flexible foams and coatings to rigid containers and automotive components. By integrating CO2 into polymer backbones, manufacturers can achieve reduced greenhouse gas emissions per ton of plastic produced, making them attractive not only from a sustainability standpoint but also as a hedge against fluctuating oil prices. Early adopters include companies in the construction, packaging, electronics, and textile industries that are increasingly aligning with ESG goals and circular economy principles.

What Technological Innovations Are Enabling the Development of CO2-Derived Plastics?

The advancement of catalytic conversion technologies is at the core of CO2-based plastic production. Key breakthroughs involve metal-based catalysts, such as zinc, cobalt, or rare-earth elements, that facilitate the reaction of CO2 with epoxides or other monomers under moderate temperatures and pressures. These catalytic processes have been refined to produce polycarbonate polyols, which are then used in the manufacture of polyurethanes and other functional polymers. In parallel, emerging research in electrocatalytic and photochemical conversion of CO2 is opening new avenues for producing customized polymer precursors using renewable electricity or solar energy.

Beyond conversion chemistry, progress in polymer processing techniques-such as reactive extrusion and advanced compounding-has enabled the blending of CO2-based polyols with conventional resins to produce hybrid plastics that maintain structural integrity while improving environmental performance. Additionally, materials scientists are developing tunable CO2-based polymers with variable hardness, flexibility, and thermal stability for diverse applications. Innovations in carbon capture and utilization (CCU) infrastructure are also enhancing the feasibility of large-scale adoption by ensuring a steady and cost-effective supply of purified CO2 for polymerization processes.

Which End-Use Industries Are Driving Demand for CO2-Based Plastics?

CO2-based plastics are finding growing acceptance across sectors that require sustainability without sacrificing performance. The packaging industry is a major adopter, using these materials to produce flexible films, rigid containers, and foamed cushioning with lower environmental impact. In automotive and mobility, CO2-derived polyurethanes are being used in seats, dashboards, and insulation components due to their lightweight and low-VOC properties. These applications align with the automotive industry's shift toward lighter, greener, and more recyclable materials.

In construction and insulation, CO2-based foams are gaining interest for use in thermal insulation panels, sealants, and adhesives, where durability and reduced carbon intensity are critical. The textile industry is exploring CO2-derived polymers as coatings and finishes that offer improved environmental profiles while maintaining fabric functionality. Additionally, electronics and consumer goods companies are integrating these materials into casings, accessories, and sustainable packaging solutions as part of their sustainability commitments. The medical sector is also assessing CO2-based plastics for applications like prosthetics, orthotic components, and non-critical device housing where biocompatibility and customizability are key.

What Is Driving the Growth of the CO2-Based Plastics Market?

The growth in the CO2-based plastics market is driven by multiple interlocking trends across regulation, innovation, and sustainability mandates. A key driver is the mounting regulatory pressure to reduce plastic waste, decarbonize industrial processes, and phase out high-emission materials. Policymakers across North America, Europe, and Asia are incentivizing low-carbon innovations, including CCU-based materials, through subsidies, green procurement standards, and carbon pricing mechanisms. These policy levers are accelerating the commercial viability of CO2-based plastics.

Corporate sustainability strategies and consumer demand for environmentally friendly products are further encouraging manufacturers to invest in greener alternatives. Advances in carbon utilization and the scaling of modular CO2 conversion units are reducing production costs and improving supply chain flexibility. As net-zero targets become a central business priority, CO2-based plastics offer a tangible way for companies to reduce Scope 3 emissions while delivering material performance. With increasing collaboration between chemical innovators, plastic manufacturers, and carbon capture technology firms, the CO2-based plastics market is poised for robust, innovation-led growth over the coming decade.

SCOPE OF STUDY:

The report analyzes the CO2 based Plastics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Polycarbonate Type, Polyurethane Type, Polypropylene Carbonate Type, Polyethylene Carbonate Type, Polyhydroxyalkanoates Type, Other Types); Production Process (Electrochemistry Production Process, Microbial Synthesis Production Process, Thermocatalysis Production Process); Application (Packaging Application, Automotive Components Application, Construction Materials Application, Electronics Components Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â