¼¼°èÀÇ ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ½ÃÀå
Digital Assistants in Healthcare
»óǰÄÚµå : 1752936
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 475 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,496,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 6¾ï 8,600¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 14.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½º¸¶Æ® ½ºÇÇÄ¿´Â CAGR 16.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 10¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 꺿 ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 10.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 8,690¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR19.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ½ÃÀåÀº 2024³â¿¡ 1¾ï 8,690¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 19.4%·Î 2030³â±îÁö 3¾ï 3,350¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 10.3%¿Í 12.9%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.4%·Î ÃßÁ¤µË´Ï´Ù.

¼¼°èÀÇ ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µðÁöÅÐ ¾î½Ã½ºÅÏÆ®°¡ ÇコÄɾî Á¦°øÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô ¹Ù²Ü °ÍÀΰ¡?

ÀΰøÁö´É(AI), ÀÚ¿¬¾î ó¸®(NLP), ¸Ó½Å·¯´× ±â¼úÀ» Ȱ¿ëÇÑ ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ȯÀÚ Âü¿©, ÀÓ»ó ¿öÅ©Ç÷οì, °ü¸® ¾÷¹«¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. À½¼ºÀÎ½Ä ±â±âºÎÅÍ Ãªº¿ ±â¹Ý ½Ã½ºÅÛ±îÁö, ÀÌ·¯ÇÑ °¡»ó ºñ¼­´Â ¿¹¾à ÀÏÁ¤ Á¶Á¤, º¹¾à ¾Ë¸² Á¦°ø, ÀÏ»óÀûÀÎ °Ç°­ °ü·Ã Áú¹®¿¡ ´ëÇÑ ´äº¯, Áø·á ÀüÈÄ È¯ÀÚ ¾È³» µî¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ È¯ÀÚ ¼ö Áõ°¡¿Í Àη ºÎÁ·¿¡ Á÷¸éÇϰí ÀÖ´Â °¡¿îµ¥, µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ¹Ýº¹ÀûÀÌ°í ½Ã°£ Á¦¾àÀÌ ÀÖ´Â »óÈ£ ÀÛ¿ëÀ» ÀÚµ¿È­ÇÔÀ¸·Î½á ¼­ºñ½º °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ÀÓ»ó°ú ÀçÅà ġ·á ¸ðµÎ¿¡¼­ Ä¡·áÀÇ Á¢±Ù¼º°ú ¿¬¼Ó¼ºÀ» Çâ»ó½Ã۰í, 24½Ã°£ 365ÀÏ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °¡´ÉÇÏ°Ô Çϰí, Àη¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ȯÀÚ°¡ Àû½Ã¿¡ Á¤È®ÇÑ Á¤º¸¸¦ Á¦°ø¹ÞÀ» ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. °í·É ȯÀÚ, ¸¸¼ºÁúȯÀÚ, °Åµ¿ÀÌ ºÒÆíÇÑ È¯Àڵ鿡°Ô ÀÌ·¯ÇÑ ±â¼úÀº Äɾî Ç÷£À» ÁؼöÇÒ ¼ö ÀÖµµ·Ï °³ÀÎÈ­µÈ Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. ÀüÀڰǰ­±â·Ï(EHR), ¿ø°ÝÀÇ·á Ç÷§Æû, ¸ð¹ÙÀÏ ¾Û°úÀÇ ÅëÇÕÀº ȯÀÚ, °£º´ÀÎ, ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü °£ÀÇ º¸´Ù ¿øÈ°ÇÑ Çù¾÷À» Áö¿øÇÕ´Ï´Ù.

ÇコÄÉ¾î µðÁöÅÐ ¾î½Ã½ºÅÏÆ®ÀÇ ±â´ÉÀ» µÞ¹ÞħÇÏ´Â ±â¼úÀº ¹«¾ùÀΰ¡?

ÇコÄÉ¾î ºÐ¾ßÀÇ µðÁöÅÐ ¾î½Ã½ºÅÏÆ®ÀÇ ÁøÈ­´Â ´ëÈ­Çü AI, À½¼º ÀνÄ, ¾ÈÀüÇÑ µ¥ÀÌÅÍ ÅëÇÕ ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. °í±Þ NLP¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¾î½Ã½ºÅÏÆ®´Â ¹®¸ÆÀ» ÀÌÇØÇϰí, Àǵµ¸¦ °¨ÁöÇϰí, ÀÔ·ÂµÈ Äõ¸® ¹× À½¼º Äõ¸®¿¡ ´ëÇÑ Á¤È®µµ ³ôÀº ÀÀ´äÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý EHR Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¾î½Ã½ºÅÏÆ®´Â °³ÀÎÈ­µÈ °Ç°­ Á¤º¸¸¦ ¾ò°í, ȯÀÚ ¸ÂÃãÇü Á¶¾ðÀ» Á¦°øÇϸç, ȯÀÚÀÇ ÀԷ¿¡ µû¶ó ÈÄ¼Ó Á¶Ä¡ ¹× °³ÀÔÀ» À§ÇÑ ¾Ë¸²À» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ® ½ºÇÇÄ¿¿Í ¿þ¾î·¯ºí ±â±â¸¦ Ȱ¿ëÇÑ À½¼º »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º´Â ƯÈ÷ ÀçÅà °£È£ ºÐ¾ß¿¡¼­ Àα⸦ ²ø°í ÀÖÀ¸¸ç, °í·ÉÀÚ³ª Àå¾ÖÀο¡°Ô ÇÚÁîÇÁ¸® Áö¿øÀ» Á¦°øÇϰí, AI ±â¹Ý ºÐ¼®À» ÅëÇØ µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ȯÀÚÀÇ Çൿ ÃßÀ̸¦ ¸ð´ÏÅ͸µÇϰí, ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ¿© Àǻ翡°Ô ½ÇÁúÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí Àǻ翡°Ô ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ°ú ¾Ïȣȭ ÇÁ·ÎÅäÄÝÀÇ µµÀÔÀº ÀÌ·¯ÇÑ ¾î½Ã½ºÅÏÆ®°¡ Ãë±ÞÇϴ ȯÀÚ µ¥ÀÌÅÍÀÇ º¸¾ÈÀ» º¸ÀåÇϰí HIPAA ¹× GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)°ú °°Àº ÇコÄÉ¾î °³ÀÎÁ¤º¸ º¸È£ ±ÔÁ¤À» ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ À¶ÇÕÀ¸·Î µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ´õ¿í °ß°íÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç, ÀÇ·á Á¦°ø¾÷ü¿Í ȯÀÚ ¸ðµÎ·ÎºÎÅÍ ½Å·Ú¸¦ ¹ÞÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ÇコÄÉ¾î »ýŰè Àü¹Ý¿¡¼­ ¾î¶² ÀÌ¿ë »ç·Ê°¡ äÅÃÀ» ÃËÁøÇϰí Àִ°¡?

µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ÇöÀç º´¿ø, Áø·á¼Ò, º¸Çè»ç, ÀçÅÃÄ¡·á ȯ°æ µî ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê¿¡¼­ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. º´¿ø¿¡¼­´Â ¾î½Ã½ºÅÏÆ®°¡ ȯÀÚ ºÐ·ù¸¦ Áö¿øÇϰí, ÀÓ»ó ±â·ÏÀ» °£¼ÒÈ­Çϰí, ÀÓ»óÀÇ¿¡°Ô ÇÁ·ÎÅäÄÝÀ» ÁؼöÇϵµ·Ï »ó±â½ÃŰ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ç¹«ÆÀÀº ¿¹¾à, û±¸, º¸Çè È®Àΰú °ü·ÃµÈ ¹®ÀÇ¿¡ ´ëÀÀÇÏ¿© Äݼ¾ÅÍÀÇ ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¦¾à»çµéÀº 꺿À» Ȱ¿ëÇÏ¿© ¾àǰ »ç¿ë ¹æ¹ý, ºÎÀÛ¿ë, ¸®ÇÊ °ü¸®¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÏ¿© º¹¾à ¼øÀÀµµ Çâ»ó¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

ȯÀÚ ¼öÁØ¿¡¼­ µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ¿ø°Ý ¸ð´ÏÅ͸µ, Á¤½Å °Ç°­ üũÀÎ, ¶óÀÌÇÁ ½ºÅ¸ÀÏ ÄÚĪ, ¸¸¼º Áúȯ °ü¸®¸¦ Áö¿øÇÕ´Ï´Ù. ¸ð¹ÙÀÏ °Ç°­ ¾Û¿¡ ÅëÇÕµÇ¾î »ç¿ëÀÚ´Â Áõ»óÀ» ±â·ÏÇϰí, ¹ÙÀÌÅ»À» ÃßÀûÇϰí, ÀÔ·Â ¹× ¿¬°áµÈ ÀåÄ¡ÀÇ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î °³ÀÎÈ­µÈ Á¶¾ðÀ»¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. Áý´Ü °Ç°­ °ü¸®¿¡¼­´Â °øÁß º¸°Ç °æº¸¸¦ ¹ß·ÉÇϰí, ¿¹¹æ Á¢Á¾ ÁؼöÀ²À» ³ôÀ̰í, ¿¹¹æ ÀÇ·á¿¡ ´ëÇØ ȯÀÚ¸¦ ±³À°ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ¼­ºñ½º Á¦°øÀÌ ´õ¿í ºÐ»êÈ­µÇ°í ȯÀÚ Áß½ÉÀûÀ¸·Î º¯È­ÇÔ¿¡ µû¶ó, ÀÌ·¯ÇÑ ¾î½Ã½ºÅÏÆ®´Â Âü¿©µµ, È¿À²¼º ¹× °á°ú¸¦ °³¼±Çϱâ À§ÇÑ Áß¿äÇÑ µµ±¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ßÀÇ µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÇコÄÉ¾î ºÐ¾ßÀÇ µðÁöÅÐ ¾î½Ã½ºÅÏÆ® ½ÃÀåÀÇ ¼ºÀåÀº È®Àå °¡´ÉÇÑ È¯ÀÚ Âü¿© ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÇ·á ¼ÒÇÁÆ®¿þ¾î¿¡ AI ¹× NLP ±â¼úÀÇ ÅëÇÕ ¹ßÀü, °¡»ó Áø·á ¸ðµ¨·ÎÀÇ Àüȯ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÓ»óÀÇÀÇ ¹ø¾Æ¿ô(burnout)À» ÁÙÀ̰í, °ü¸® È¿À²¼ºÀ» ³ôÀ̸ç, ÀÇ·á ¼­ºñ½º¸¦ Á¦´ë·Î ¹ÞÁö ¸øÇÏ´Â »ç¶÷µé¿¡°Ô±îÁö ÀÇ·á ¼­ºñ½º¸¦ Á¦°øÇØ¾ß ÇÒ Çʿ伺ÀÌ Áö´ÉÇü ÀÚµ¿È­ µµ±¸ÀÇ µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. À½¼º Áö¿ø Ç÷§Æû°ú »óÈ£ ¿î¿ë °¡´ÉÇÑ ÀÇ·á ±â·Ï°ú °°Àº µðÁöÅÐ ÀÇ·á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó º¹ÀâÇÑ ÀÇ·á ¼­ºñ½º ȯ°æ¿¡¼­ ÀÌ·¯ÇÑ º¸Á¶ µµ±¸ÀÇ À¯¿ë¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¿ø°Ý ȯÀÚ ¸ð´ÏÅ͸µ, ¿ø°Ý ÀÇ·á, ÇÏÀ̺긮µå ÄÉ¾î ¸ðµ¨ Ã¤Åðú °°Àº ÃÖÁ¾»ç¿ëÀÚ µ¿ÇâÀº °³ÀÎÈ­µÇ°í Áö¼ÓÀûÀÎ Áö¿øÀ» Á¦°øÇÒ ¼ö ÀÖ´Â °¡»ó ÀÎÅÍÆäÀ̽ºÀÇ Çʿ伺À» ´õ¿í Áõ´ë½Ã۰í ÀÖ½À´Ï´Ù. ½º¸¶Æ® º´¿ø°ú AI ±â¹Ý ÀÇ·á ½Ã½ºÅÛÀÇ È®ÀåÀº ¸Æ¶ô ÀÎ½Ä ¹× ÀÓ»óÀûÀ¸·Î ÅëÇÕµÈ ¾î½Ã½ºÅÏÆ® °³¹ß¿¡µµ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ÒºñÀÚµéÀÌ ÀÏ»ó »ýȰ¿¡¼­ µðÁöÅÐ ¾î½Ã½ºÅÏÆ®¿¡ Àͼ÷ÇØÁü¿¡ µû¶ó, ƯÈ÷ ÀþÀº ÃþÀÇ ÇコÄÉ¾î µµÀÔ À庮ÀÌ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ½Å·Ú¼º, Á¤È®¼º, »ç¿ëÀÚ °æÇèÀÇ Çâ»óÀ¸·Î µðÁöÅÐ ¾î½Ã½ºÅÏÆ®´Â ÇâÈÄ ÇコÄɾî Âü¿©¿Í ¼­ºñ½º Á¦°ø¿¡ ÀÖ¾î ÇʼöÀûÀÎ Á¸Àç°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

À¯Çü(½º¸¶Æ® ½ºÇÇÄ¿, 꺿), »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º(ÀÚµ¿ À½¼ºÀνÄ, ÅØ½ºÆ® ±â¹Ý, À½¼º ÇÕ¼º), ¿ëµµ(ȯÀÚ ÃßÀû ¿ëµµ, ÀÇ·á ÂüÁ¶ ¿ëµµ, Áø´Ü °¡ÀÌµå ¿ëµµ, ¾àÁ¦ Åõ¿© ¿ëµµ, ÀÇ·á °è»ê±â ¿ëµµ, °£È£ ÂüÁ¶ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(ÀÇ·á Á¦°øÀÚ ÃÖÁ¾ ¿ëµµ, ÀÇ·áºñ ÁöºÒÀÚ ÃÖÁ¾ ¿ëµµ, ȯÀÚ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 37°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Digital Assistants in Healthcare Market to Reach US$1.5 Billion by 2030

The global market for Digital Assistants in Healthcare estimated at US$686.0 Million in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 14.3% over the analysis period 2024-2030. Smart Speakers, one of the segments analyzed in the report, is expected to record a 16.3% CAGR and reach US$1.0 Billion by the end of the analysis period. Growth in the Chatbots segment is estimated at 10.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$186.9 Million While China is Forecast to Grow at 19.4% CAGR

The Digital Assistants in Healthcare market in the U.S. is estimated at US$186.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$333.5 Million by the year 2030 trailing a CAGR of 19.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.3% and 12.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.4% CAGR.

Global Digital Assistants in Healthcare Market - Key Trends & Drivers Summarized

How Are Digital Assistants Transforming the Future of Healthcare Delivery?

Digital assistants in healthcare are revolutionizing patient engagement, clinical workflows, and administrative operations by leveraging artificial intelligence (AI), natural language processing (NLP), and machine learning technologies. These virtual assistants-ranging from voice-activated devices to chatbot-based systems-are increasingly used to facilitate appointment scheduling, provide medication reminders, answer routine health queries, and guide patients through pre- and post-care instructions. As healthcare systems face rising patient loads and staffing shortages, digital assistants are helping bridge the service gap by automating repetitive and time-sensitive interactions.

In both clinical and homecare settings, digital assistants are enhancing care accessibility and continuity. They enable 24/7 communication, reducing dependence on human personnel while ensuring that patients receive timely and accurate information. For elderly patients, those with chronic conditions, or individuals with limited mobility, these technologies offer personalized assistance that promotes adherence to care plans. Their integration into electronic health records (EHRs), telehealth platforms, and mobile apps is supporting more seamless coordination between patients, caregivers, and healthcare providers.

What Technologies Are Powering the Capabilities of Healthcare Digital Assistants?

The evolution of digital assistants in healthcare is underpinned by rapid progress in conversational AI, speech recognition, and secure data integration systems. Advanced NLP allows these assistants to understand context, detect intent, and respond to both typed and spoken queries with increasing precision. Integration with cloud-based EHR platforms enables assistants to retrieve personalized health information, offer patient-specific advice, and trigger alerts for follow-up or intervention based on patient inputs.

Voice user interfaces, powered by smart speakers and wearable devices, are especially gaining popularity in home-based care, offering hands-free support for elderly and disabled users. AI-powered analytics enable digital assistants to monitor trends in patient behavior, flag anomalies, and provide actionable insights to physicians. Increasing deployment of edge computing and encryption protocols ensures that patient data handled by these assistants remains secure and compliant with healthcare privacy regulations, such as HIPAA and GDPR. The convergence of these technologies is making digital assistants more robust, reliable, and trusted by both providers and patients.

Which Use Cases Are Driving Adoption Across the Healthcare Ecosystem?

Digital assistants are now widely adopted across hospitals, clinics, insurance firms, and homecare environments for a broad spectrum of use cases. In hospital settings, assistants are used to support triage, streamline clinical documentation, and remind clinicians of protocol compliance. Administrative teams deploy them to reduce call center burdens by handling inquiries related to appointments, billing, and insurance verification. Pharmaceutical companies utilize chatbots to provide information on drug usage, side effects, and refill management, helping improve medication adherence.

At the patient level, digital assistants support remote monitoring, mental health check-ins, lifestyle coaching, and chronic disease management. They are integrated into mobile health apps, enabling users to log symptoms, track vitals, or receive personalized advice based on inputs and connected device data. In population health management, they play a vital role in disseminating public health alerts, encouraging vaccination compliance, and educating patients about preventive care. As healthcare delivery becomes more decentralized and patient-driven, these assistants are emerging as vital tools for improving engagement, efficiency, and outcomes.

What Key Factors Are Fueling Market Growth for Digital Assistants in Healthcare?

The growth in the digital assistants in healthcare market is driven by several factors, including the rising demand for scalable patient engagement solutions, growing integration of AI and NLP technologies in medical software, and the shift toward virtual care models. The need to reduce clinician burnout, enhance administrative efficiency, and extend healthcare reach to underserved populations is accelerating the deployment of intelligent automation tools. Increasing investment in digital health infrastructure, including voice-enabled platforms and interoperable health records, is expanding the utility of these assistants in complex care delivery environments.

End-use trends such as the adoption of remote patient monitoring, telemedicine, and hybrid care models are further amplifying the need for virtual interfaces that can deliver personalized and continuous support. The expansion of smart hospitals and AI-powered medical systems is also catalyzing the development of context-aware, clinically integrated assistants. Moreover, consumer familiarity with digital assistants in everyday life is reducing adoption barriers in healthcare, especially among younger demographics. As innovation continues to improve reliability, accuracy, and user experience, digital assistants are set to become integral to the future of healthcare engagement and service delivery.

SCOPE OF STUDY:

The report analyzes the Digital Assistants in Healthcare market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Smart Speakers, Chatbots); User Interface (Automatic Speech Recognition, Text-based, Text-to-Speech); Application (Patient Tracking Application, Medical Reference Application, Diagnostic Guides Application, Drug Dosage Application, Medical Calculators Application, Nursing Reference Application, Other Applications); End-Use (Healthcare Providers End-Use, Healthcare Payers End-Use, Patients End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 37 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â