¼¼°èÀÇ ÀüÀÚºÎǰ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å Àç·á ½ÃÀå
Electronic Cleaning and Flux Removal Materials
»óǰÄÚµå : 1752951
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 402 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,496,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀüÀÚºÎǰ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å Àç·á ¼¼°è ½ÃÀåÀº 2030³â±îÁö 20¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 14¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀüÀÚºÎǰ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å Àç·á ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 5.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 20¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¿ëÁ¦ Ŭ¸®³Ê´Â CAGR 7.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5¾ï 9,310¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼º Ŭ¸®³Ê ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 8,470¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR9.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀüÀÚºÎǰ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å Àç·á ½ÃÀåÀº 2024³â¿¡ 3¾ï 8,470¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 4¾ï 670¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 9.4%·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 2.7%¿Í 5.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.8%·Î ÃßÁ¤µË´Ï´Ù.

¼¼°èÀÇ ÀüÀÚºÎǰ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å Àç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö´ë ÀüÀÚÁ¦Ç° Á¦Á¶¿¡¼­ ÀüÀÚºÎǰÀÇ ¼¼Ã´ ¹× Ç÷°½º Á¦°Å¿¡ ´ëÇÑ ½Å·Ú°¡ ³ô¾ÆÁö´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÀüÀÚ ¾î¼Àºí¸®ÀÇ º¹À⼺ ¹× ¼ÒÇüÈ­·Î ÀÎÇØ Á¦Á¶ ¹ë·ùüÀο¡¼­ Á¤¹ÐÇϰí È¿°úÀûÀÎ ¼¼Ã´ ¼Ö·ç¼ÇÀÇ Á߿伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ç÷°½º Á¦°Å ¹× ¼¼Á¤ Àç·á´Â Àμâ ȸ·Î ±âÆÇ(PCB) ¹× ¹ÝµµÃ¼ ºÎǰÀÇ ½Å·Ú¼º°ú ±â´ÉÀ» ÀúÇØÇÏ´Â À̿¼º ¿À¿° ¹°Áú, ¼Ö´õ ÀÜ¿©¹°, ¿ÀÀÏ, Áö¹® ¹× ±âŸ ºÒ¼ø¹°À» Á¦°ÅÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µð¹ÙÀ̽ºÀÇ ¼ÒÇüÈ­¿Í ȸ·ÎÀÇ °í¹ÐµµÈ­¿¡ µû¶ó, ƯÈ÷ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀÇ·á, ±¹¹æ µî ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ºÐ¾ß¿¡¼­´Â ÀÜ·ù ¿À¿°¹°Áú¿¡ ´ëÇÑ Çã¿ëÄ¡°¡ ÇöÀúÈ÷ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù.

³³¶« °øÁ¤¿¡¼­ ³²¾ÆÀÖ´Â Ç÷°½º ÀÜ·ù¹°Àº ¼öºÐÀ» ²ø¾î´ç°Ü ¼öÁö»ó µ¹±âÀÇ ¼ºÀå, ´©Àü ¶Ç´Â ¿ÏÀüÇÑ ´Ü¶ôÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì¼¼ ÇÇÄ¡ ºÎǰ ¹× º¼ ±×¸®µå ¾î·¹ÀÌ(BGA)ÀÇ °æ¿ì, ¹Ì¼¼ÇÑ ÀÜ·ù¹°µµ ÇöÀå °áÇÔÀ» À¯¹ßÇÒ ¼ö ÀÖÀ¸¸ç, °øÀå Å×½ºÆ®¿¡¼­´Â Á¾Á¾ °¨ÁöµÇÁö ¾Ê´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀϺΠÀÀ¿ë ºÐ¾ß¿¡¼­´Â ¹«¼¼Á¤ Ç÷°½º¸¦ »ç¿ëÇÏ¿© ¼¼Ã´ÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖÁö¸¸, °í½Å·Ú¼º ºÐ¾ß¿¡¼­´Â ¼±ÅÃÀû ¶Ç´Â ±¹¼ÒÀûÀÎ ¼¼Ã´ÀÌ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼­ ÀüÀÚºÎǰ ¼¼Á¤ ¹× Ç÷°½º Á¦°Å Àç·á´Â ¼öÀ² Çâ»ó, Á¦Ç° ¼ö¸í ¹× º¸Áõ ºñ¿ë Àý°¨À» À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

½É¹ÚÁ¶À²±â, Ç×°øÀüÀÚ Á¦¾îÀåÄ¡, ÀÚÀ² ÁÖÇà ¼¾¼­, »ê¾÷ ÀÚµ¿È­ ÄÁÆ®·Ñ·¯¿Í °°Àº °í½Å·Ú¼º ÀüÀÚ±â±â¿¡¼­ ¼¼Á¤Àº ´õ ÀÌ»ó ¼±ÅûçÇ×ÀÌ ¾Æ´Ï¶ó IPC ¹× MIL-STD Ç¥ÁØ¿¡ µû¶ó Àǹ«È­µÇ¾î ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ³³ ¼Ö´õ¿¡¼­ ¹«¿¬ ¼Ö´õ ½Ã½ºÅÛ(SAC ÇÕ±Ý)À¸·ÎÀÇ ÀüȯÀº º¸´Ù °ß°íÇÑ Ç÷°½º ÀÜ·ù¹°¿¡ È¿°úÀûÀÎ »õ·Î¿î ¼¼Á¤ È­ÇÐ ¹°Áú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿òÁ÷ÀÓÀº ´Ù¾çÇÑ °øÁ¤ ¿ä±¸¿¡ ¸Â´Â ¼ö¼º, ¹Ý¼ö¼º ¹× ¿ë¸Å ±â¹Ý ¼¼Á¤Á¦ÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå Â÷º°È­¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä Àç·á À¯Çü°ú ¼¼Ã´ ±â¼úÀº ¹«¾ùÀΰ¡?

ÀüÀÚºÎǰ ¼¼Á¤ ¹× Ç÷°½º Á¦°Å Àç·á´Â Å©°Ô ¼ö¼º(¼ö¼º), ¹Ý¼ö¼º(¿ë¸Å¿Í ¹°ÀÇ È¥ÇÕ), ¿ë¸Å ±â¹Ý ½Ã½ºÅÛ µî ±âº» È­ÇÐÀû ¼ºÁú¿¡ µû¶ó ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ Ä«Å×°í¸®´Â Àç·á ÀûÇÕ¼º, ¼¼Á¤ È¿À², °ÇÁ¶ ½Ã°£, ȯ°æ Á¦¾à, °øÁ¤ ÅëÇÕÀ» ÅëÇØ °¢±â ´Ù¸¥ °­Á¡À» °¡Áö°í ÀÖ½À´Ï´Ù.

¼ö°è ¼¼Á¤Á¦´Â °è¸éȰ¼ºÁ¦, °æÈ­Á¦, ų·¹ÀÌÆ®Á¦¸¦ ÇÔÀ¯Çϰí ÀÖ´Â °æ¿ì°¡ ¸¹À¸¸ç, ºñ¿ë È¿À²¼º°ú ȯ°æ ģȭÀûÀ̱⠶§¹®¿¡ ´ë±Ô¸ð PCB Á¶¸³ ¶óÀο¡¼­ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. À̵éÀº ¼ø¼ö Çó±À°ú ¿­Ç³ °ÇÁ¶¸¦ ÅëÇÑ ¹èÄ¡½Ä ¶Ç´Â ÀζóÀÎ ½ºÇÁ·¹ÀÌ ¼¼Á¤ ½Ã½ºÅÛ¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù. ±×·¯³ª ºÎ½ÄÀ» ÇÇÇϱâ À§ÇØ ´õ ±ä »çÀÌŬ ½Ã°£°ú Á¤È®ÇÑ pH Á¦¾î°¡ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ý¼ö¼º Àç·á´Â ¼¼Á¤·Â°ú Àç·á ¾ÈÀü¼ºÀÇ ±ÕÇüÀ» Á¦°øÇÕ´Ï´Ù. źȭ¼ö¼Ò ¶Ç´Â Å׸£Ææ°è ¿ë¸Å¸¦ ¹°°ú È¥ÇÕÇÏ¿© °í·ÎÁø ¹× °íȰ¼º Ç÷°½º ÀÜ·ù¹°À» Á¦°ÅÇÕ´Ï´Ù.

¼Öº¥Æ® ±â¹Ý ¼¼Á¤Á¦´Â ÃÖ°íÀÇ ¼¼Á¤ È¿°ú¸¦ ¹ßÈÖÇϸç, º¹ÀâÇÑ ºÎǰÀ̳ª Á¼Àº Çü»óÀÇ ÀçÀÛ¾÷, ¼ö¸® ¹× ±¹¼Ò ¼¼Á¤¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ±×·¯³ª Æ®¸®Å¬·Î·Î¿¡Æ¿·»À̳ª n-ÇÁ·ÎÆÄÀÏ ºê·Î¸¶À̵å¿Í °°Àº ÀüÅëÀûÀÎ ¿ë¸Å´Â ȯ°æ ¹× °Ç°­ ¹®Á¦·Î ÀÎÇØ ¸¹ÀÌ »ç¿ëµÇÁö ¾Ê°í ÀÖ½À´Ï´Ù. ÃֽйèÇÕÀº ºü¸¥ Áõ¹ß, ³·Àº Ç¥¸é Àå·Â, ³·Àº Áö±¸ ¿Â³­È­ Áö¼ö(GWP)¸¦ °¡Áø HFE(ÇÏÀ̵å·ÎÇ÷ç¿À·Î¿¡Å׸£) ¹× HFO(ÇÏÀ̵å·ÎÇ÷ç¿À·Î¿Ã·¹ÇÉ) ±â¹Ý¿¡ ÁßÁ¡À» µÎ¾î VOC ¹× PFAS ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù.

¼¼Ã´ ±â¼úµµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÃÊÀ½ÆÄ ¼¼Ã´, ½ºÆÀ Å»Áö, ·Îº¿À» ÀÌ¿ëÇÑ ¼±ÅÃÀû ¼¼Á¤Á¦ ºÐ»ç µîÀÌ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¿À¿° ¼¾¼­, µ¥ÀÌÅÍ ·Î±ë, ¹° ÀçȰ¿ë ±â´ÉÀ» °®Ãá Æó¼â ·çÇÁ ¼¼Ã´ ½Ã½ºÅÛÀº ÷´Ü Á¦Á¶ ȯ°æÀÇ Ç¥ÁØÀÌ µÇ°í ÀÖ½À´Ï´Ù.

´ë·® ¼ö¿ä¸¦ âÃâÇÏ´Â »ê¾÷°ú ¿ëµµ´Â?

½º¸¶Æ®Æù, ³ëÆ®ºÏ, ÅÂºí¸´, ¿þ¾î·¯ºí ±â±â, °ÔÀÓ±â µî ¾öû³­ »ý»ê·®À» ÀÚ¶ûÇÏ´Â °¡ÀüÁ¦Ç° Á¦Á¶¾÷ü´Â ÀüÀÚºÎǰ ¼¼Á¤ ¹× Ç÷°½º Á¦°Å Àç·áÀÇ °¡Àå Å« ¼ö¿ä ±â¹ÝÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦Ç°µéÀº Ç¥¸é½ÇÀå±â¼ú(SMT) ¾î¼Àºí¸® ¹× ÀÚµ¿ ±¤ÇÐ °Ë»ç(AOI) Ç¥ÁØ¿¡ ºÎÇÕÇÏ´Â °í󸮷® ¼¼Ã´ÀÌ ÇÊ¿äÇÕ´Ï´Ù. °í¹Ðµµ·Î ÀåÂøµÈ PCB, ¼ÒÇüÈ­µÈ Ä¿³ØÅÍ, °í°¨µµ ¼¾¼­ÀÇ »ç¿ëÀº Àç·áÀÇ ¿­È­ ¾øÀÌ ÀÜ·ù¹° ¾ø´Â ¼¼Ã´À» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ß, ƯÈ÷ Àü±âÀÚµ¿Â÷(EV) ¹× ADAS žÀç Ç÷§ÆûÀº ºü¸£°Ô ¼ºÀåÇÏ´Â ÃÖÁ¾ »ç¿ë ºÐ¾ß·Î, ECU, ¸®Æ¬ À̿ ¹èÅ͸® Á¦¾î ÀåÄ¡, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ, ¶óÀÌ´õ/·¹ÀÌ´õ ¼¾¼­´Â ³ôÀº ¿­ »çÀÌŬ, Áøµ¿ ¹× ½Àµµ¸¦ °ßµ®³»¾ß ÇÕ´Ï´Ù. µû¶ó¼­ ISO ¹× AEC-Q200 Ç¥ÁØ¿¡ µû¶ó Àý¿¬ ÀúÇ×°ú ³·Àº À̿ ¿À¿°À» º¸ÀåÇÏ´Â °í¼º´É ¼¼Á¤¾×¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÀüÀÚÁ¦Ç°Àº È¥ÇÕ ±Ý¼Ó ±âÆÇ°ú ÄÁÆ÷¸Ö ÄÚÆÃÀÌ È£È¯µÇ´Â °í½Å·Ú¼º ¾î¼Àºí¸®¸¦ À§ÇÑ ¼¼Ã´ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, MIL-STD-2000°ú °°Àº ±º¿ë »ç¾çÀº À̿ ũ·Î¸¶Åä±×·¡ÇÇ °ËÁõÀÌ Æ÷ÇÔµÈ ¹®¼­È­µÈ ¼¼Ã´ ÇÁ·ÎÅäÄÝÀ» ¿ä±¸ÇÕ´Ï´Ù. ¿ä±¸µË´Ï´Ù. ¸¶Âù°¡Áö·Î ÀÇ·á±â±â Á¦Á¶¾÷ü´Â ¼ö¼ú ±â±¸, ¿µ»ó ½Ã½ºÅÛ, ȯÀÚ ¸ð´ÏÅÍ¿Í °°Àº ÀüÀÚ ±â±â¿¡ »ýü ÀûÇÕ¼º, ¹«ÀÜ·ù¼º, ¸ê±Õ¿¡ ÀûÇÕÇÑ ¼¼Á¤Á¦¸¦ »ç¿ëÇÕ´Ï´Ù.

Ç÷°½º Á¦°ÅÁ¦ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÇÙ½É ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀüÀÚºÎǰ ¼¼Á¤ ¹× Ç÷°½º Á¦°Å Àç·á ½ÃÀåÀÇ ¼ºÀåÀº ¹«¿¬ ¹× ÀúÀÜ·ù Ç÷°½º äÅà Áõ°¡, PCBÀÇ °í¹ÐµµÈ­ ¹× ¼ÒÇüÈ­, °í½Å·Ú¼º ÀüÀÚ±â±â º¸±Þ, ¿ëÁ¦ ¹èÃâ ¹× Á¦Ç° ¼ö¸í ÁÖ±â Áؼö¿¡ ´ëÇÑ È¯°æ ¹× ±ÔÁ¦ ±âÁØ °­È­ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

ù°, PCBÀÇ ¼ÒÇüÈ­ ¹× ´ÙÃþÈ­ Ãß¼¼·Î ÀÎÇØ Ç÷°½º ÀÜ·ù°¡ Á¡Á¡ ´õ ¹®Á¦°¡µÇ°í ÀÖ½À´Ï´Ù. ºÎǰ °£ °£°ÝÀÌ ÀÛ¾ÆÁö°í, ¹Ì·®ÀÇ ÀÜ·ù¹°µµ ¼öÁö»ó ±³·® ¹× Àü±â È­ÇÐÀû À̵¿À» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ³·Àº Ç¥¸é Àå·ÂÀ¸·Î ÀÜ·ù¹°À» ¿ÏÀüÈ÷ Á¦°ÅÇÒ ¼ö ÀÖ´Â °í¼øµµ ¼¼Á¤Á¦°¡ ÇÊ¿äÇÕ´Ï´Ù.

µÑ°, ¹«¿¬ ³³¶«À¸·ÎÀÇ ÀüȯÀ¸·Î ÀÎÇØ Ç÷°½º ÀÜ·ù¹°ÀÇ °ø°Ý¼º°ú ²öÀûÀÓÀÌ ºÎÁÖÀÇÇÏ°Ô Áõ°¡ÇßÀ¸¸ç, SAC ±â¹Ý ÇÕ±ÝÀº ´õ ³ôÀº ³³¶« ¿Âµµ¿Í ´õ ³ôÀº Ȱ¼º Ç÷°½º¸¦ ÇÊ¿ä·ÎÇϹǷΠ´õ Á¤±³ÇÑ ¼¼Á¤¾×ÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¦Á¶¾÷ü´Â ¼±ÅÃÀû ¸®ÇÃ·Î¿ì ¼¼Á¤ ¹× ¿þÀÌºê ³³¶«¿ë Ç÷°½º¿¡ ÃÖÀûÈ­µÈ ¸ÂÃãÇü Àç·á¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù.

¼Â°, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀÇ·á¿ë ÀüÀÚ±â±â µîÀÇ »ê¾÷¿¡¼­´Â ÇöÀå °íÀå ºñ¿ë°ú ÀÎÁõ ±âÁØÀÇ °­È­·Î ÀÎÇØ ½Å·Ú¼º ¿ä±¸»çÇ×ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, IPC-J-STD-001 ¹× ISO13485ÀÇ ¿ä±¸»çÇ×À» ÃæÁ·Çϱâ À§Çؼ­´Â µ¥ÀÌÅÍ ·Î±×¿Í Åë°èÀûÀ¸·Î ¸ð´ÏÅ͸µµÈ ¼¼Ã´ »çÀÌŬÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÇʼöÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ȯ°æ ÄÄÇöóÀ̾𽺰¡ ¼ÒÀç °³¹ßÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. À¯Çع°Áú »ç¿ë Á¦ÇÑ(RoHS), REACH¿¡ ÀÇÇÑ VOC ±ÔÁ¦, ¿ÀÁ¸Ãþ ÆÄ±« ¿ë¸Å »ç¿ë ±ÝÁö Áõ°¡·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº »ýºÐÇØ¼º, Àú GWP, ºÒ¿¬¼º ´ëüǰÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó ±×¸° Äɹ̽ºÆ®¸® Çõ½ÅÀ» Á¦°øÇÏ´Â ±â¾÷Àº °æÀï ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(¼Öº¥Æ® ¼¼Á¤Á¦, ¼ö¼º ¼¼Á¤Á¦, ¼ö¼º ¼¼Á¤Á¦, ¹Ý¼ö¼º ¼¼Á¤Á¦, ºñÈ­ÇÐ ¼¼Á¤ ¹æ¹ý, ±Ø¼¼»ç ¹°Æ¼½´ ¹× ¸éºÀ, ±âŸ Á¦Ç°); ¾ÖÇø®ÄÉÀ̼Ç(µð½ºÇ÷¹ÀÌ ¹× ÅÍÄ¡ ÆÐ³Î ¾ÖÇø®ÄÉÀ̼Ç, ¹ÝµµÃ¼ ÀåÄ¡ ¾ÖÇø®ÄÉÀ̼Ç, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÀüÀÚ ¾ÖÇø®ÄÉÀ̼Ç, Àμâ ȸ·Î ±âÆÇ ¾ÖÇø®ÄÉÀ̼Ç, ¼¾¼­ ¹× ¾×Ãß¿¡ÀÌÅÍ ¾ÖÇø®ÄÉÀ̼Ç, ÀÇ·á ÀüÀÚ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç); ÃÖÁ¾ ¿ëµµ(ÀüÀÚ ÃÖÁ¾ ¿ëµµ, ÀÚµ¿Â÷ ÃÖÁ¾ ¿ëµµ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÃÖÁ¾ ¿ëµµ, ÀÇ·á ±â±â ÃÖÁ¾ ¿ëµµ, Åë½Å ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ).

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 36°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electronic Cleaning and Flux Removal Materials Market to Reach US$2.0 Billion by 2030

The global market for Electronic Cleaning and Flux Removal Materials estimated at US$1.4 Billion in the year 2024, is expected to reach US$2.0 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2024-2030. Solvent Cleaners, one of the segments analyzed in the report, is expected to record a 7.3% CAGR and reach US$593.1 Million by the end of the analysis period. Growth in the Water-based Cleaners segment is estimated at 4.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$384.7 Million While China is Forecast to Grow at 9.4% CAGR

The Electronic Cleaning and Flux Removal Materials market in the U.S. is estimated at US$384.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$406.7 Million by the year 2030 trailing a CAGR of 9.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.7% and 5.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.8% CAGR.

Global Electronic Cleaning and Flux Removal Materials Market - Key Trends & Drivers Summarized

Why Is There a Growing Reliance on Electronic Cleaning and Flux Removal in Modern Electronics Manufacturing?

The increasing complexity and miniaturization of electronic assemblies have amplified the importance of precise and effective cleaning solutions in the manufacturing value chain. Flux removal and cleaning materials are critical in eliminating ionic contaminants, soldering residues, oils, fingerprints, and other impurities that compromise reliability and functionality in printed circuit boards (PCBs) and semiconductor components. As devices shrink and circuit densities rise, the tolerance for residual contaminants decreases significantly, especially in mission-critical sectors such as aerospace, automotive, medical, and defense.

Flux residues left behind during soldering processes can attract moisture, leading to dendritic growth, electrical leakage, or outright short-circuiting. Furthermore, in fine-pitch components and ball grid arrays (BGAs), even microscopic residues can cause field failures, often not detected during factory testing. The use of no-clean fluxes, while reducing cleaning needs in some applications, still warrants selective or localized cleaning in high-reliability segments. This makes electronic cleaning and flux removal materials essential for yield enhancement, product longevity, and warranty cost reduction.

In high-reliability electronics-such as pacemakers, avionics control units, autonomous vehicle sensors, and industrial automation controllers-cleaning is no longer optional but mandated under IPC and MIL-STD standards. The shift from traditional leaded solder to lead-free solder systems (SAC alloys) has also driven demand for new cleaning chemistries that are effective on tougher flux residues. These dynamics are fueling innovation in aqueous, semi-aqueous, and solvent-based cleaning materials tailored to a diverse set of process needs.

What Are the Key Material Types and Cleaning Technologies Driving Market Differentiation?

Electronic cleaning and flux removal materials can be broadly categorized based on their base chemistry: aqueous (water-based), semi-aqueous (solvent-water blends), and solvent-based systems. Each category has its application-specific strengths depending on material compatibility, cleaning efficiency, drying time, environmental constraints, and process integration.

Aqueous cleaners, often formulated with surfactants, saponifiers, and chelating agents, are preferred in large-scale PCB assembly lines due to their cost-effectiveness and eco-friendliness. These are widely used in batch or inline spray cleaning systems with DI water rinses and hot air drying. However, they may require longer cycle times and precise pH control to avoid corrosion. Semi-aqueous materials offer a balance of cleaning power and material safety. These use hydrocarbon or terpene-based solvents mixed with water to remove high-rosin and high-activity flux residues.

Solvent-based cleaners provide the highest cleaning efficacy and are especially useful in rework, repair, or localized cleaning of complex components and tight geometries. However, many traditional solvents like trichloroethylene and n-propyl bromide are being phased out due to environmental and health concerns. Modern formulations now emphasize HFE (hydrofluoroether) and HFO (hydrofluoroolefin) bases that provide fast evaporation, low surface tension, and low global warming potential (GWP), ensuring compliance with VOC and PFAS regulations.

Cleaning technologies are also evolving. Ultrasonic cleaning, vapor degreasing, and selective robotic dispensing of cleaning agents are gaining traction. Closed-loop cleaning systems with real-time contamination sensors, data logging, and water recycling features are becoming standard in advanced manufacturing environments.

Which Industries and Applications Are Creating High-Volume Demand?

Consumer electronics manufacturers form the largest demand base for electronic cleaning and flux removal materials, given the immense production volumes of smartphones, laptops, tablets, wearables, and gaming devices. These products require high throughput cleaning that aligns with surface-mount technology (SMT) assembly and automated optical inspection (AOI) standards. The use of densely packed PCBs, miniaturized connectors, and sensitive sensors necessitates residue-free cleaning without material degradation.

The automotive sector-particularly electric vehicles (EVs) and ADAS-equipped platforms-is a fast-expanding end-use segment. ECUs, Li-ion battery control units, infotainment systems, and lidar/radar sensors must withstand high thermal cycling, vibration, and humidity. This elevates the need for high-performance cleaning solutions that ensure insulation resistance and low ionic contamination, as per ISO and AEC-Q200 standards.

Aerospace and defense electronics require cleaning solutions that can handle high-reliability assemblies with mixed-metal substrates and conformal coating compatibility. Military specifications such as MIL-STD-2000 require documented cleaning protocols with ion chromatography verification. Similarly, medical device manufacturers utilize cleaning agents that are biocompatible, residue-free, and sterilization-compatible for electronics in surgical instruments, imaging systems, and patient monitors.

What Are the Core Factors Propelling Growth in the Flux Removal Materials Market?

The growth in the electronic cleaning and flux removal materials market is driven by several factors including the rising adoption of lead-free and low-residue fluxes, increased density and miniaturization of PCBs, the proliferation of high-reliability electronics, and the tightening of environmental and regulatory norms related to solvent emissions and product life-cycle compliance.

Firstly, the global shift toward miniaturization and multi-layered PCBs has made flux residues increasingly problematic. With reduced clearances between components, even trace residues can cause dendritic bridging and electrochemical migration. This necessitates high-purity cleaning materials that offer complete residue removal at low surface tension.

Secondly, the move to lead-free soldering has inadvertently increased the aggressiveness and tenacity of flux residues. SAC-based alloys require higher soldering temperatures and more active fluxes, which in turn necessitate more sophisticated cleaning solutions. Manufacturers are adopting tailor-made materials optimized for selective reflow cleaning or wave soldering fluxes.

Thirdly, industries such as automotive, aerospace, and medical electronics have escalated their reliability requirements due to the cost of field failures and stricter certification criteria. In these domains, cleaning is a process validation requirement, with data-logged, statistically monitored cleaning cycles becoming essential to meet IPC-J-STD-001 or ISO 13485 requirements.

Finally, environmental compliance is shaping material development. The restriction of hazardous substances (RoHS), VOC regulations under REACH, and growing bans on ozone-depleting solvents are pushing manufacturers toward biodegradable, low-GWP, and non-flammable alternatives. As the regulatory landscape tightens, companies offering green chemistry innovations are gaining competitive advantage.

SCOPE OF STUDY:

The report analyzes the Electronic Cleaning and Flux Removal Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Solvent Cleaners, Water-based Cleaners, Aqueous Cleaners, Semi-Aqueous Cleaners, Non-Chemical Cleaning Methods, Microfiber Wipes & Swabs, Other Products); Application (Displays & Touch Panels Application, Semiconductor Devices Application, Aerospace & Defense Electronics Application, Printed Circuit Boards Application, Sensors & Actuators Application, Medical Electronics Application, Other Applications); End-Use (Electronics End-Use, Automotive End-Use, Aerospace & Defense End-Use, Medical Devices End-Use, Telecommunications End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â