°Ë»ö Áõ°­ »ý¼º(RAG) ½ÃÀå : ÇöȲ ºÐ¼®°ú ¿¹Ãø(2025-2033³â)
Retrieval Augmented Generation Market: Current Analysis and Forecast (2025-2033)
»óǰÄÚµå : 1747321
¸®¼­Ä¡»ç : UnivDatos Market Insights Pvt Ltd
¹ßÇàÀÏ : 2025³â 05¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 140 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,999 £Ü 5,808,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇϸç, Àμâ´Â ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,499 £Ü 7,986,000
PDF & Excel (Site License - Up to 5 Users) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ Copy&Paste, Àμ⠰¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â ÆÄÀÏÀÇ ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,999 £Ü 10,165,000
PDF & Excel (Global License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ Copy&Paste, Àμ⠰¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â ÆÄÀÏÀÇ ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°Ë»ö Áõ°­ »ý¼º(RAG) ½ÃÀåÀº ¿¹Ãø ±â°£(2025-2033F) µ¿¾È ¾à 32.1%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ´ëºÎºÐÀÇ ±¹°¡µéÀÌ RAG¸¦ äÅÃÇϰí ÀÖÁö¸¸, Áß±¹°ú Àεµ°¡ ÀÌ ±â¼úÀÇ µµÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Áß±¹ °æÁ¦´Â Á¤ºÎÀÇ AI Áö¿ø°ú ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼öÁýÀ» ÅëÇØ ºü¸£°Ô ºñÁî´Ï½º µðÁöÅÐ ÀüȯÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀεµÀÇ ±â¼ú ºÎ¹®Àº Á¤ºÎÀÇ µðÁöÅÐ ÀÌ´Ï¼ÅÆ¼ºê¿Í Áö¼ÓÀûÀÎ AI ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥À» ÅëÇØ AI °³¹ßÀÇ ¸®´õ½ÊÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â RAG ±â¼ú äÅÿ¡ ºü¸£°Ô ´ëóÇϰí ÀÖ¾î ½Å±â¼ú °³¹ßÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ±â¾÷ Á¶Á÷Àº Á¤È®Çϰí È®Àå °¡´ÉÇÑ AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ½Ç½Ã°£ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ ¼ö ÀÖ´Â Á¤È®Çϰí È®Àå °¡´ÉÇÑ AI ¿ëµµ¸¦ ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù.

¹èÆ÷¿¡ µû¶ó ½ÃÀåÀº Ŭ¶ó¿ìµå¿Í On-Premise·Î ±¸ºÐµË´Ï´Ù. ÀÌ Áß Å¬¶ó¿ìµå ºÎ¹®ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ºÎ¹®ÀÇ RAG ½ÃÀåÀÇ ÁÖ¿ä ¸ÅÃâ ÃËÁø¿äÀÎÀº ź·ÂÀûÀÎ AI µµÀÔ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ºñÁî´Ï½º ¿ä±¸°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶ó´Â ´ë±Ô¸ð ÀÚº»±Ý ÁöºÒ ´ë½Å ¿î¿µ ¸®½º¸¦ ÅëÇØ È¿°úÀûÀÎ ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ´ëÇÑ ¾×¼¼½º¸¦ Á¦°øÇϹǷΠRAG¿Í °°Àº º¹ÀâÇÑ AI ½Ã½ºÅÛÀ» ´ë±Ô¸ð·Î µµÀÔÇÒ ¼ö ÀÖÀ¸¸ç, RAG´Â ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. RAG´Â Á¢±ÙÀÌ ¿ëÀÌÇÏ°í ºü¸¥ ¹èÆ÷¿Í ¼Õ½¬¿î À¯Áöº¸¼ö°¡ °¡´ÉÇϱ⠶§¹®¿¡ Á¶Á÷ Àüü¿¡ RAG ±â¼úÀ» ½±°Ô µµÀÔÇÒ ¼ö ÀÖÀ¸¸ç, RAG ¸ðµ¨ÀÌ ÇÊ¿ä·Î ÇÏ´Â ´ë·®ÀÇ ºñÁ¤Çü µ¥ÀÌÅ͸¦ ó¸®ÇØ¾ß Çϱ⠶§¹®¿¡ Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ µ¥ÀÌÅÍ ÀúÀå ¹× Ã³¸® ±â´ÉÀº ¿©ÀüÈ÷ ÇʼöÀûÀÔ´Ï´Ù.

¿ëµµ¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº °í°´ Áö¿ø ¹× 꺿, ÄÁÅÙÃ÷ »ý¼º, °Ë»ö ¿£Áø °­È­, ÀÇ·á Á¤º¸ °Ë»ö, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÌ Áß °í°´ Áö¿ø ¹× 꺿Àº RAG(Search Augmented Generation) »ê¾÷¿¡ °¡Àå Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ °í°´°úÀÇ »óÈ£ÀÛ¿ë ¸Æ¶ô°ú °ü·ÃµÈ ºü¸£°í Á¤È®ÇÑ ´äº¯À» ¿øÇϱ⠶§¹®¿¡ RAG(Retrieval-Augmented Generation)ÀÇ ÁÖ¿ä ¼ºÀå ¿µ¿ªÀº °í°´ Áö¿ø & 꺿¿¡¼­ ¹ß»ýÇÕ´Ï´Ù. ±âÁ¸ÀÇ Ãªº¿Àº Áö½Äâ°í³ª ¹®¼­¿¡¼­ ÀûÀýÇÑ µ¥ÀÌÅ͸¦ °¡Á®¿Í ÀÀ´äÀ» »ý¼ºÇÏ´Â RAG ±â´ÉÀ¸·Î ÀÛµ¿ÇÕ´Ï´Ù. RAG ±â¹Ý 꺿À» ÅëÇØ ±â¾÷Àº ¿î¿µÀ» ÀÚµ¿È­Çϰí, ÀüÀÚ»ó°Å·¡, ÀºÇà, Åë½Å, IT ¼­ºñ½º µîÀÇ Ç¥ÁØ ¼­ºñ½º Á¦°øÀ» À¯ÁöÇϸ鼭 ¿î¿µÀ» È®ÀåÇÒ ¼ö ÀÖÀ¸¸ç, °í°´ ¸¸Á·µµ¿Í Ãæ¼ºµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¼­ºñ½º Á¦°øÀ» À¯ÁöÇϸ鼭 ¿î¿µ ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÃÖÁ¾ »ç¿ëÀÚ¿¡ µû¶ó ½ÃÀåÀº IT ¹× Åë½Å, ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI), ÀÇ·á, ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡, ±³À°, ±âŸ·Î ºÐ·ùµË´Ï´Ù. ÀÌ Áß IT ¹× Åë½ÅÀº RAG »ê¾÷¿¡ °¡Àå Å« ±â¿©¸¦ Çϰí ÀÖÀ¸¸ç, IT ¹× Åë½Å ±â¾÷À» RAG ½ÃÀåÀ¸·Î À̲ô´Â ÁÖ¿ä µ¿·ÂÀº Áö½Ä ½Ã½ºÅÛ °­È­¿Í ¾÷¹« ÀÚµ¿È­¸¦ ²÷ÀÓ¾øÀÌ ÃßÁøÇÏ´Â µ¥¼­ ±âÀÎÇÕ´Ï´Ù. ÀÚµ¿È­, ±×¸®°í »ç¿ëÀÚ¿Í ÀÛ¾÷ÀÚ ¸ðµÎ¿¡ ´ëÇÑ Á¤È®ÇÑ ½Ç½Ã°£ Áö¿øÀ» À§ÇØ ±â¼ú ¹®¼­¿Í ¼­ºñ½º ±â·ÏÀ» Æ÷ÇÔÇÑ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ °í°´ Âü¿© Á¤º¸¿Í ÇÔ²² ºÐ¼®Çϱâ À§ÇØ RAG¸¦ ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº Á¶Á÷µéÀÌ RAG ¸ðµ¨À» µµÀÔÇÏ¿© ¼­ºñ½º ¼Óµµ¸¦ Çâ»ó½ÃŰ¸é¼­ Áß¿äÇÑ Á¤º¸¿¡ ºü¸£°Ô Á¢±ÙÇÏ°í ¾÷¹« È¿À²¼ºÀ» °³¼±Çϰí ÀÖÀ¸¸ç, IT ÀÎÇÁ¶ó °ü¸® ºÐ¾ßÀÇ ±â¾÷µéÀº AI ±â¹Ý °¡»ó ºñ¼­ ¹× °ü¸® µµ±¸ÀÇ Áö´ÉÇü °Ë»ö ±â´ÉÀ» °áÇÕÇÏ¿© RAG ¼Ö·ç¼ÇÀ» ºü¸¥ ¼Óµµ·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù.

°Ë»ö Áõ°­ »ý¼º(RAG) ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½±â À§ÇØ ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áß±¹, ÀϺ», Àεµ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), Àü ¼¼°è ±âŸ Áö¿ªÀÇ Àü ¼¼°è ½ÃÀå Á¡À¯À²À» ±âÁØÀ¸·Î ºÐ¼®µÇ¾ú½À´Ï´Ù. ¸ðµç Áö¿ª Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ RAG ½ÃÀåÀº Áß±¹, Àεµ, ÀϺ», ÀϺ», µ¿³²¾Æ½Ã¾Æ ±¹°¡¸¦ Æ÷ÇÔÇÑ ±¹°¡ Àü¹ÝÀÇ ÀΰøÁö´É µµÀÔ°ú È®ÀåµÈ IT ÀÎÇÁ¶ó Áõ°¡¿Í ÇÔ²² µðÁöÅÐÈ­ Ãß¼¼·Î ÀÎÇØ ±âÇϱ޼öÀûÀÎ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¤ºÎ¿Í ±â¾÷µéÀº ÀºÇà °í°´ ¹× ÀÇ·á ½Ã¼³À» À§ÇÑ ÀÚµ¿È­ ½Ã½ºÅÛ, ÀºÇà ¹× ÀÇ·á, ÀüÀÚ»ó°Å·¡, ±³À° ºÐ¾ß Àü¹Ý¿¡ °ÉÄ£ »ê¾÷¿ëµµ¸¦ ÅëÇØ µ¥ÀÌÅÍ ºÐ¼® ¾÷¹«¸¦ °­È­ÇϰíÀÚ ÀΰøÁö´É¿¡ ´ëÇÑ ÀçÁ¤Àû Áö¿øÀ» ¾Æ³¢Áö ¾Ê°í ÀÖ½À´Ï´Ù. ½ºÅ¸Æ®¾÷ÀÇ ±â¾÷ÀÌ Á¤½Å, »ç¾÷ È®Àå, ¹Î°ü Çù·Â º¥Ã³°¡ °áÇÕÇÏ¿© AI¿Í RAGÀÇ ±â¼ú Çõ½ÅÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ºñÁ¤Çü µ¥ÀÌÅÍ¿Í ÇÔ²² ´Ù±¹¾î µ¥ÀÌÅͰ¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Áö´ÉÇü µ¥ÀÌÅÍ °Ë»ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±ä±ÞÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß±¹Àº ¹æ´ëÇÑ ÀÎÀû ÀÚ¿ø°ú ¿ìÈ£ÀûÀÎ AI ±ÔÁ¦ ½Ã½ºÅÛÀÇ Á¶ÇÕÀ¸·Î Àεµ¿Í ÇÔ²² AI »ê¾÷ÀÇ ¼±µÎÁÖÀÚ·Î ºÎ»óÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¶Á÷Àº Áö½ÄÀ» °ü¸®ÇÏ°í °³ÀÎÈ­µÈ µðÁöÅÐ Àü´ÞÀ» Á¦°øÇÏ´Â ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¼¼°è RAG ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀ¸·Î APAC Áö¿ª¿¡ ÀÇÁ¸ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

½ÃÀå ÁÖ¿ä ±â¾÷À¸·Î´Â Amazon Web Services, Inc., IBM Corporation, NVIDIA Corporation, Clarifai, Inc, Google LLC, Informatica Inc, Meta Platforms Inc. ., Microsoft Corporation, OpenAI, LLC, Databricks, Inc. µîÀÌ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý ¶Ç´Â ÀüÁ¦Á¶°Ç

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

Á¦5Àå °¡°Ý ºÐ¼®

Á¦6Àå ¼¼°èÀÇ °Ë»ö Áõ°­ »ý¼º(RAG) ½ÃÀå ¸ÅÃâ,2023-2033³â

Á¦7Àå ½ÃÀå ÀλçÀÌÆ® : Àü°³ Çüź°

Á¦8Àå ½ÃÀå ÀλçÀÌÆ® : ¿ëµµº°

Á¦9Àå ½ÃÀå ÀλçÀÌÆ® : ÃÖÁ¾»ç¿ëÀÚº°

Á¦10Àå ½ÃÀå ÀλçÀÌÆ® : Áö¿ªº°

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå °æÀï ±¸µµ

Á¦13Àå ±â¾÷ °³¿ä

Á¦14Àå µÎÀÚ¾î¿Í ÀüÁ¦Á¶°Ç

Á¦15Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The advanced AI technique Retrieval-Augmented Generation (RAG) connects linguistic systems with data retrieval capabilities, which produces factual responses that acknowledge current contexts. RAG extracts appropriate external information as a preprocessing step before the generation process because of which enables it to achieve superior performance for complex knowledge-based tasks. Industry-wide demand for reliable explainable AI solutions drives the current market expansion, while customer service, together with healthcare finance and research, represent primary application sectors. Global adoption of RAG increases due to rising digital transformation, together with the development of large language models and marketplace demand for domain-specific intellectual capabilities.

The Retrieval Augmented Generation market is set to show a growth rate of about 32.1% during the forecast period (2025-2033F). Most countries in the Asia-Pacific region will embrace Retrieval Augmented Generation, yet China and India lead the deployment of this technology. The Chinese economy advances because of governmental AI backing, together with massive data collection, enabling quick business digital transformation efforts. The technology sector in India supports leadership in AI development because it is supported by government digital initiatives and ongoing AI funding programs. These countries lead the development of emerging technologies because they move rapidly to adopt RAG technology. Business organizations worldwide require exact and scalable AI applications to manage real-time data since their precise and scalable AI solution needs continue to grow.

Based on Deployment, the market is segmented into Cloud and On-Premises. Among these, the Cloud segment is leading the market. The primary driver of RAG market sales within the cloud segment stems from rising business need for elastic AI deployment solutions. The cloud infrastructure provides businesses access to effective computing resources through operational leases instead of major capital payments, thus enabling better implementation of complex AI systems like RAG at scale. The RAG features easy accessibility, which makes it easier to implement RAG technologies throughout organizations, as it can make fast deployments and maintain tasks effortlessly. The data storage and processing functions of cloud platforms remain essential because RAG models need to process the large amounts of unstructured data they require.

Based on the Application, the market is segmented into Customer Support & Chatbots, Content Generation, Search Engine Enhancement, Healthcare Information Retrieval, and Others. Among these, Customer Support & Chatbots is the largest contributor to the Retrieval Augmented Generation industry. The main area of Retrieval-Augmented Generation (RAG) growth occurs in Customer Support & Chatbots since businesses demand prompt, precise answers related to the context of their customer interactions. Conventional chatbots work with RAG capabilities to retrieve suitable data from knowledge bases or documents to generate their responses. The implemented functionality offers genuine person-to-person interactions, which lead customers to become more satisfied and loyalty-driven toward the company. RAG-powered chatbots allow organizations to automate operations scaling, which minimizes operational expenses while preserving standard service delivery across e-commerce and banking and telecoms, and IT services.

Based on the End-Users, the market is segmented into IT & Telecom, BFSI, Healthcare, Retail & E-commerce, Education, and Others. Among these, IT & Telecom is the largest contributor to the Retrieval Augmented Generation industry. The main force propelling IT & Telecom firms towards the Retrieval-Augmented Generation (RAG) market stems from their endless drive to strengthen knowledge systems and automate operations. IT and telecom companies perform extensive use of RAG to analyze large data sets, including technical documentation and service records, together with customer engagement information for better internal system management and automated ticket automation, as well as precise real-time support to both users and workers. Through RAG model implementation in many organizations, they can achieve faster access to critical information and better operational efficiency while increasing their service speed. Companies in the IT infrastructure management sector are implementing RAG solutions at an exponential rate because of AI-powered virtual assistants combined with intelligent search capabilities in their management tools.

For a better understanding of the market adoption of Retrieval Augmented Generation, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Out of all the regions, the Asia-Pacific RAG market expands at an exponential rate because of digitalization trends coupled with increasing artificial intelligence adoption and extended IT infrastructure across countries, including China, India, Japan, and Southeast Asian nations. The governments and businesses of the region are dedicating financial support to artificial intelligence initiatives because they wish to enhance their data analytics operations through automated systems for banking customers and healthcare facilities, and industrial applications across banking and healthcare and e-commerce, and education sectors. Startup entrepreneurship, expansion, and public-private cooperative ventures work together to advance AI and RAG technology innovation. The increasing quantity of multilingual, along with unstructured data across Asia Pacific territories, creates an urgent need for intelligent data retrieval solutions, thus reinforcing market requirements for RAG systems. The combination of its huge human capital base and friendly AI regulation systems enables China, along with India, to emerge as AI industry leaders. Worldwide organizations will depend on the APAC region to drive worldwide RAG market expansion because they need cost-effective, scalable solutions that manage knowledge and provide personalized digital delivery.

Some major players running in the market include Amazon Web Services, Inc., IBM Corporation, NVIDIA Corporation, Clarifai, Inc., Google LLC, Informatica Inc., Meta Platforms Inc., Microsoft Corporation, OpenAI, LLC, and Databricks, Inc.

TABLE OF CONTENTS

1.Market Introduction

2.Research Methodology or Assumption

3.Executive Summary

4.Market Dynamics

5.Pricing Analysis

6.Global Retrieval Augmented Generation Market Revenue (USD Mn), 2023-2033F

7.Market Insights By Deployment

8.Market Insights By Application

9.Market Insights By End-Users

10.Market Insights By Region

11.Value Chain Analysis

12.Competitive Landscape

13.Company Profiled

14.Acronyms & Assumption

15.Annexure

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â